Paolo PIERSANTI

助理教授

教育背景

博士后(印第安纳大学)

博士(香港城市大学)

研究领域
应用泛函分析;偏微分方程;微分几何;变分法;数值分析;生物数学;最优化;冰川学中的数学问题
学术领域
数学与应用数学,材料学
个人网站
电子邮件
ppiersanti@cuhk.edu.cn
个人简介

Dr. Paolo Piersanti 2019年在香港城市大学获数学博士学位,师从Professor Philippe G. Ciarlet。加入香港中文大学(深圳)前,他在印第安纳大学担任博士后研究员,在Professor Roger M. Temam指导下开展研究工作。Dr. Paolo Piersanti研究领域包括弹性理论、液晶建模、冰川学中的数学问题、生物数学,偏微分方程数值解、科学计算和深度学习。

学术著作
  1. P. Piersanti and P. Pucci. Existence theorems for fractional p-Laplacian problems. Anal. Appl., 15(5), 607–640, 2017.
  2. P. Piersanti and P. Pucci. Entire solutions for critical p-fractional Hardy Schr¨odinger Kirchhoff equations. Publ. Mat., 62(1), 3–36, 2018.
  3. P. G. Ciarlet, C. Mardare and P. Piersanti. Un problème de confinement pour une coque membranaire linéairementélastique de type elliptique. (French). C.R. Acad. Sci. Paris, Ser. I, 356(10), 1040–1051, 2018.
  4. P. G. Ciarlet and P. Piersanti. A confinement problem for a linearly elastic Koiter’s shells. C.R. Acad. Sci. Paris, Ser. I, 357(2), 221–230, 2019.
  5. P. G. Ciarlet, C. Mardare and P. Piersanti. An obstacle problem for elliptic membrane shells. Math. Mech. Solids, 24(5), 1503–1529, 2019.
  6. P. G. Ciarlet and P. Piersanti. An obstacle problem for Koiter’s shells. Math. Mech. Solids, 24(10), 3061–3079, 2019.
  7. P. Piersanti. An existence and uniqueness theorem for the dynamics of flexural shells. Math. Mech. Solids, 25(2), 317–336, 2020.
  8. X. Shen, L. Piersanti and P. Piersanti. Numerical simulations for the dynamics of flexural shells. Math. Mech. Solids, 25(4), 887–912, 2020.
  9. P. Piersanti. A time-dependent obstacle problem in linearised elasticity. Nonlinear Anal., 192, 17 pp., 2020.
  10. P. Piersanti and X. Shen. Numerical methods for static shallow shells lying over an obstacle. Num. Algorithms, 85(2), 623–652, 2020.
  11. P. Piersanti. On the justification of the frictionless time-dependent Koiter’s model for thermoelastic shells. J. Differential Equations, 296, 50–106, 2021.
  12. P. Piersanti. On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell lying subject to an obstacle. Asymptot. Anal., 127(1–2), 35–55, 2022.
  13. P. Piersanti. On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete Contin. Dyn. Syst. Ser. A, 42(2), 1011–1032, 2022.
  14. P. Piersanti. Asymptotic analysis of linearly elastic elliptic membrane shells subjected to an obstacle. J. Differential Equations, 320, 114–142, 2022.
  15. P. Piersanti, K. White, B. Dragnea and R. Temam. A simplified model of virus deformation in contact with a surface. Applicable Anal., 101(11), 3947–3957, 2022.
  16. P. Piersanti, K. White, B. Dragnea and R. Temam. A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface in the static and time-dependent case. Anal. Appl., 20(6), 1159–1191, 2022.
  17. P. Piersanti and R. Temam. On the dynamics of grounded shallow ice sheets: Modeling and analysis. Adv. Nonlinear Anal., 12(1), pp. 40, 2023.
  18. W. Duan, P. Piersanti, X. Shen and Q. Yang. Numerical corroboration of Koiter’s model for all the main types of linearly elastic shells in the static case. Math. Mech. Solids, 28(11), 2347–2369, 2023.
  19. P. Piersanti. Asymptotic analysis of linearly elastic flexural shells subjected to an obstacle in absence of friction. J. Nonlinear Sci., 33(4), pp. 39, 2023.
  20. A. Meixner and P. Piersanti. Numerical approximation of the solution of an obstacle problem modelling the displacement of elliptic membrane shells via the penalty method. Appl. Math. Optim., 89, article 45, 2024.