Paolo PIERSANTI

Assistant Professor

教育背景

Ph.D. [City University of Hong Kong (Hong Kong Ph.D. Fellowship Awardee)]

Zorn Postdoctoral Fellow (Indiana University Bloomington)

研究领域
Applied functional analysis, partial differential equations, differential geometry, calculus of variations, numerical analysis, mathematical biology, numerical optimisation, mathematical glaciology
学术领域
Mathematics and Applied Mathematics, Materials
个人网站
电子邮件
ppiersanti@cuhk.edu.cn
个人简介

Dr. Paolo Piersanti obtained his Ph.D. degree in Mathematics from City University of Hong Kong in 2019.

Prior to joining The Chinese University of Hong Kong, Shenzhen, Dr. Piersanti held an appointment as a Zorn Postdoctoral Fellow at Indiana University Bloomington.

Dr. Piersanti’s major research interests include Elasticity Theory, Liquid Crystals Modelling, Mathematical Glaciology, Mathematical Biology, and Numerical Analysis for the solutions of Partial Differential Equations, Scientific Computing, and Deep Learning.

学术著作
  1. P. Piersanti and P. Pucci. Existence theorems for fractional p-Laplacian problems. Anal. Appl., 15(5), 607–640, 2017.
  2. P. Piersanti and P. Pucci. Entire solutions for critical p-fractional Hardy Schr¨odinger Kirchhoff equations. Publ. Mat., 62(1), 3–36, 2018.
  3. P. G. Ciarlet, C. Mardare and P. Piersanti. Un problème de confinement pour une coque membranaire linéairementélastique de type elliptique. (French). C.R. Acad. Sci. Paris, Ser. I, 356(10), 1040–1051, 2018.
  4. P. G. Ciarlet and P. Piersanti. A confinement problem for a linearly elastic Koiter’s shells. C.R. Acad. Sci. Paris, Ser. I, 357(2), 221–230, 2019.
  5. P. G. Ciarlet, C. Mardare and P. Piersanti. An obstacle problem for elliptic membrane shells. Math. Mech. Solids, 24(5), 1503–1529, 2019.
  6. P. G. Ciarlet and P. Piersanti. An obstacle problem for Koiter’s shells. Math. Mech. Solids, 24(10), 3061–3079, 2019.
  7. P. Piersanti. An existence and uniqueness theorem for the dynamics of flexural shells. Math. Mech. Solids, 25(2), 317–336, 2020.
  8. X. Shen, L. Piersanti and P. Piersanti. Numerical simulations for the dynamics of flexural shells. Math. Mech. Solids, 25(4), 887–912, 2020.
  9. P. Piersanti. A time-dependent obstacle problem in linearised elasticity. Nonlinear Anal., 192, 17 pp., 2020.
  10. P. Piersanti and X. Shen. Numerical methods for static shallow shells lying over an obstacle. Num. Algorithms, 85(2), 623–652, 2020.
  11. P. Piersanti. On the justification of the frictionless time-dependent Koiter’s model for thermoelastic shells. J. Differential Equations, 296, 50–106, 2021.
  12. P. Piersanti. On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell lying subject to an obstacle. Asymptot. Anal., 127(1–2), 35–55, 2022.
  13. P. Piersanti. On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete Contin. Dyn. Syst. Ser. A, 42(2), 1011–1032, 2022.
  14. P. Piersanti. Asymptotic analysis of linearly elastic elliptic membrane shells subjected to an obstacle. J. Differential Equations, 320, 114–142, 2022.
  15. P. Piersanti, K. White, B. Dragnea and R. Temam. A simplified model of virus deformation in contact with a surface. Applicable Anal., 101(11), 3947–3957, 2022.
  16. P. Piersanti, K. White, B. Dragnea and R. Temam. A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface in the static and time-dependent case. Anal. Appl., 20(6), 1159–1191, 2022.
  17. P. Piersanti and R. Temam. On the dynamics of grounded shallow ice sheets: Modeling and analysis. Adv. Nonlinear Anal., 12(1), pp. 40, 2023.
  18. W. Duan, P. Piersanti, X. Shen and Q. Yang. Numerical corroboration of Koiter’s model for all the main types of linearly elastic shells in the static case. Math. Mech. Solids, 28(11), 2347–2369, 2023.
  19. P. Piersanti. Asymptotic analysis of linearly elastic flexural shells subjected to an obstacle in absence of friction. J. Nonlinear Sci., 33(4), pp. 39, 2023.
  20. A. Meixner and P. Piersanti. Numerical approximation of the solution of an obstacle problem modelling the displacement of elliptic membrane shells via the penalty method. Appl. Math. Optim., 89, article 45, 2024.