周凯
助理教授
博士(清华大学)
学士(西安交通大学)
周凯教授于2009年在西安交通大学物理系获得理学学士学位,2014年在清华大学物理系获得博士学位。此后,他于2014至2017年在德国法兰克福歌德大学理论物理研究所(ITP)担任博士后研究员。自2017年7月起,他在法兰克福高等研究院(FIAS)担任研究员(W1教授级别)及团队负责人,领导“Deepthinkers”小组进行AI for Science研究项目,特别是在现代计算范式下的高能核物理研究,包括应用机器和深度学习,并指导硕士/博士学生和博士后在人工智能科学方面的研究。2022年,他在FIAS晋升为高级研究员(W2教授级别)。自2023年底,他加入香港中文大学(深圳)理工学院担任助理教授。
周教授在AI for Science领域拥有广泛的兴趣,包括高能核物理、统计物理、能源、应用导向以及其他多元化领域。他致力于推动融合物理学研究与现代计算范式如人工智能,特别是机器学习,以提供新的途径和洞察力来探索物理世界,同时也以物理学知识为灵感,以塑造计算技术的进一步发展。
他已发表50多篇同行评审期刊论文和众多会议论文,并曾受邀在多个国际会议作大会报告,如SQM, Initial Stages,国际核物理大会,机器学习格点场论等。他也受邀为多家期刊审稿,包括:PRL、PRD、PRC、PRE、Nature Communications、Astrophysical Journal-AAS、JCAP、NST、CPC、Frontier of Physics、EPJA、Particles、Measurements、Sustainability、NeurIPS、PLOS ONE等。目前担任《现代物理通讯A》和《国际现代物理A》期刊的副主编。
代表性论文(*通讯作者):
- K. Zhou*, L. Wang, L. Pang, S. Shi, “Exploring QCD Matter in Extreme Conditions with Machine Learning", Prog. Part. Nucl. Phys. 104084 (2023) (Invited Review)
- M. O.K, J. Steinheimer, K. Zhou*, H. Stoecker, “QCD Equation of State of Dense Nuclear Matter from a Bayesian Analysis of Heavy-Ion Collision Data", Phys. Rev. Lett. 131, 202303 (2023) (Editors’ Suggestion)
- L. Wang, B. Hare, K. Zhou*, H. Stoecker, O. Scholten, “Identifying Lightning Structures via Machine Learning", Chaos, Solitons & Fractals 170, 113346 (2023)
- S. Soma, L. Wang, S. Shi, H. Stoecker, K. Zhou*, “Reconstructing the Neutron Star Equation of State from Observational Data via Automatic Differentiation." Phys. Rev. D 107, 083028 (2023)
- S. Chen, O. Savchuk, S. Zheng, B. Chen, H. Stoecker, L. Wang, K. Zhou*, “Fourier-Flow model generating Feynman Paths", Phys. Rev. D 107, 056001 (2023)
- S. Shi, L. Wang, K. Zhou*, “Rethinking the Ill-posedness of the Spectral Function Reconstruction – Why is it fundamentally hard and how Artificial Neural Networks can help”, Comput. Phys. Commun. 282, 108547(2023)
- Y. Cheng, S. Shi, Y. Ma, H. Stoecker, K. Zhou*, “Examination of Nucleon Distribution with Bayesian Imaging for Isobar Collisions”, Phys. Rev. C 107, 064909 (2023)
- Y. Zhao, L. Wang, K. Zhou*, X. Huang, "Detecting the Chiral Magnetic Effect via Deep Learning", Phys. Rev. C 106, L051901 (2022) (Letter)
- L. Wang, S. Shi, K. Zhou*, "Reconstructing spectral functions via automatic differentiation", Phys. Rev. D 106, L051502 (2022) (Letter)
- X. Gao, A. Hanlon, N. Karthik, S. Mukherjee, P. Petreczky, P. Scior, S. Shi, S. Syritsyn, Y. Zhao, K. Zhou, "Continuum-extrapolated NNLO valence PDF of the pion at the physical point", Phys. Rev. D 106, 114510 (2022)
- L. Wang, Y. jiang, L. He, K. Zhou*, "Continuous-Mixture Autoregressive Networks Learning the Kosterlitz-Thouless Transition", Chinese Phys. Lett. 39, 120502 (2022)
- S. Shi, K. Zhou*, J. Zhao, W. Mukherjee, P. Zhuang, "Heavy quark potential in the quark-gluon plasma: Deep neural network meets lattice quantum chromodynamics", Phys. Rev. D 105, 014017 (2022)
- Y. Sha, J. Faber, S. Gou, B. Liu, W. Li, S. Schramm, H. Stoecker, T. Steckenreiter, D. Vnucec, N. Wetzstein, A. Widl, K. Zhou*, "A multi-task learning for cavitation detection and cavitation intensity recognition of valve acoustic signals", Engineering Applications of Artificial Intelligence 113, 104904 (2022)
- S. Soma, L. Wang, S. Shi, H. Stoecker, K. Zhou*, "Neural Network Reconstruction of the Dense Matter Equation of State from Neutron Star Observables", JCAP 8, 071 (2022)
- Y. Sha, J. Faber, S. Gou, B. Liu, W. Li, S. Schramm, H. Stoecker, T. Steckenreiter, D. Vnucec, N. Wetzstein, A. Widl, K. Zhou*, "Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space", KDD’22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
- M. O.K, K. Zhou*, J. Steinheimer, A. Redelbach, H. Stoecker, "An equation-of-state-meter for CBM using PointNet", JHEP 10, 184 (2021)
- L. Wang, T. Xu, T. Stoecker, H. Stoecker, Y. Jiang, K. Zhou*, "Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID19-risk", Machine Learning: Science and Technology 2, 035031 (2021)
- L. Jiang, L. Wang, K. Zhou*, "Deep Learning Stochastic Processes with QCD Phase Transition", Phys. Rev. D 103, 116023 (2021)
- M. O. K, J. Steinheimer, K. Zhou*, A. Redelbach, H. Stoecker, "A fast centrality-meter for heavy-ion collisions at the CBM experiment", Phys. Lett. B 811, 135872 (2020)
- Y. Du, K. Zhou*, J. Steinheimer, L. Pang, A. Motornenko, H. Zong, X. Wang, H. Stoecker, "Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning", Eur. Phys. J. C 80, 516 (2020)
- J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup, H. Stoecker, "A machine learning study to identify spinodal clumping in high energy nuclear collisions", JHEP 12, 122 (2019)
- K. Zhou*, G. Endroedi, L. Pang, H. Stoecker, "Regressive and generative neural networks for scalar field theory", Phys. Rev. D 100, 011501 (2019) (Rapid Communication) [102 citations]
- J. Zhao, K. Zhou, S. Chen, P. Zhuang, "Heavy flavors under extreme conditions in high energy nuclear collisions", Prog. Part. Nucl. Phys. 114, 103801 (2020) (Invited Review)
- L. Pang, K. Zhou*, N. Su, H. Petersen, H. Stoecker and X. Wang, “An equation-of-state-meter of quantum chromodynamics transition from deep learning”, Nature Commun. 9 (2018) no.1, 210 [153 citations]
- K. Zhou, Z. Xu, P. Zhuang, C. Greiner, "Kinetic description of Bose-Einstein condensation with test particle simulations", Phys. Rev. D 96, 014020 (2017)
- K. Zhou*, Z. Chen, C. Greiner, P. Zhuang, "Thermal Charm and Charmonium Production in Quark Gluon Plasma", Phys. Lett. B 758, 434 (2016)
- Z. Xu, K. Zhou, P. Zhuang, C. Greiner, "Thermalization of gluons with Bose-Einstein condensation", Phys. Rev. Lett. 114, 182301 (2015)
- K. Zhou, N. Xu, Z. Xu, P. Zhuang, "Medium effects on charmonium production at ultra-relativistic energies available at the CERN Large Hadron Collider", Phys. Rev. C 89, 054911 (2014) [256 citations]