潘兴斌

教授

教育背景

理学博士(山东大学)

研究领域
偏微分方程;变分方法;超导、液晶、电磁场的数学理论;非线性Maxwell方程与Maxwell-Stokes方程
学术领域
数学与应用数学
个人网站
电子邮件
panxingbin@cuhk.edu.cn
个人简介

潘兴斌教授1987年获山东大学数学系博士学位后在浙江大学任教,1993年12月晋升教授,2004年受聘华东师范大学紫江特聘教授,2006年1月受聘华东师大终身教授,2007年12月31日起任二级教授。现任香港中文大学(深圳)理工学院教授。主要研究领域为偏微分方程,包括非线性偏微分方程理论,变分问题,超导、液晶、电磁场的数学理论等。主持国家自然科学基金项目8项、教育部优秀青年教师基金项目、教育部博士点基金项目、上海市浦江人才计划项目等。作为骨干成员参加国家科技部973项目。已发表论文98篇。他在表面超导数学理论的研究成果在国际同行中有一定影响。1995年合作获国家自然科学奖四等奖。1997年入选国家百千万人才工程第一、二层次,教育部跨世纪优秀人才培养计划。2000年入选浙江省高校优秀中青年学科带头人。2006年获国务院特殊津贴。2012年获“宝钢优秀教师奖”。2019年获教育部自然科学奖二等奖(一等奖提名)。

学术著作
  1. Ginzburg-Landau equation and Meissner states of multiply-connected superconductors, Journal of Functional Analysis, Vol. 286, No. 12 (2024), article no. 110717 (74 pages).
  2. Static and evolution equations with degenerate curls, Journal of Differential Equations, Vol. 391 (2024), 167-219.
  3. Existence of Meissner solutions to the full Ginzburg-Landau system in three dimensions, Archive for Rational Mechanics and Analysis, Vol. 248, No. 2 (2024), art. no. 17, (55 pages, with X.F. Xiang).
  4. Maxwell-Stokes system with Robin boundary condition, Calculus of Variations and Partial Differential Equations, Vol. 62, No. 6 (2023), art. no. 167.
  5. On the shape of Meissner solutions to the 2-dimensional Ginzburg-Landau system, Mathematische Annalen, Vol. 387, No. 1-2 (2023), 541-613 (with X. F. Xiang).
  6. Div-curl system with potential and Maxwell-Stokes system with natural boundary condition, Journal of Dynamics and Differential Equations, Vol. 34, No.3 (2022), 1769-1821.
  7. The general magneto-static model and Maxwell-Stokes system with topological parameters, Journal of Differential Equations, 270 (1) (2021), 1079-1137.
  8. Oscillatory patterns in the Ginzburg-Landau model driven by the Aharonov-Bohm potential, Journal of Functional Analysis, Vol. 279, No. 10 (2020), article no. 108718 (with A. Kachmar).
  9. Concentration behavior and lattice structure of surface superconductivity, Mathematical Physics, Analysis and Geometry, Vol. 22, No. 2 (2019), article no. 12 (with S. Fournais and J.-P. Miqueu).
  10. Mixed normal-superconducting states in the presence of strong electric currents, Archive for Rational Mechanics and Analysis, 223, No. 1 (2017), 419-462 (with Y. Almog and B. Helffer).
  11. Existence and regularity of solutions to quasilinear systems of Maxwell type and Maxwell-Stokes type, Calculus of Variations and Partial Differential Equations, Vol. 55, No. 6 (2016), article no.143.
  12. Partial Sobolev spaces and anisotropic smectic liquid crystals, Calculus of Variations and Partial Differential Equations, Vol. 51, No. 3 (2014), 963-998.
  13. Critical elastic coefficient of liquid crystals and hysteresis, Communications in Mathematical Physics, Vol.280, No.1 (2008), 77-121.
  14. Surface superconductivity in 3-dimensions, Transactions of the American Mathematical Society, Vol. 356, No. 10 (2004), 3899-3937.
  15. Landau-de Gennes model of liquid crystals and critical wave number, Communications in Mathematical Physics, Vol.239, No.1-2 (2003), 343-382.
  16. Surface superconductivity in applied magnetic fields above H_c2, Communications in Mathematical Physics, Vol. 228, No. 2 (2002), 327-370.