李清玉
助理教授
教育背景
博士(慕尼黑工业大学,地球科学,04/2019 – 11/2022)
硕士(慕尼黑工业大学,Earth Oriented Space Science and Technology,10/2016 – 11/2018)
硕士(武汉大学,摄影测量与遥感,09/2015 – 06/2019)
本科(武汉大学,遥感科学与技术,09/2011 – 06/2015)
研究领域
人工智能;遥感;计算机视觉;地理空间应用
学术领域
计算机工程,人工智能与机器人
个人网站
电子邮件
liqingyu@cuhk.edu.cn
个人简介
李清玉于2015年获得武汉大学遥感科学与技术学士学位,2018年获得德国慕尼黑工业大学(TUM)Earth Oriented Space Science and Technology (ESPACE)硕士学位,2019年获得武汉大学摄影测量与遥感硕士学位,2022年获得慕尼黑工业大学地球科学工程博士(Dr.-Ing.)学位。2019年至2022年,她曾在慕尼黑工业大学和德国航空航天中心(DLR)遥感技术研究所(IMF)开展研究。2022年至2024年,她是慕尼黑工业大学的博士后研究员。她的研究兴趣包括人工智能、遥感、计算机视觉和地理空间应用。她已发表论文30余篇,其中以第一作者在IEEE Transactions on Geoscience and Remote Sensing、International Journal of Applied Earth Observation and Geoinformation、Applied Energy、Sustainable Cities and Society等高水平SCI期刊发表10余篇论文。2020年获德国测绘、地理信息与土地管理协会的测绘奖。担任SCI期刊Remote Sensing的客座编委,国际遥感信息处理研讨会IGARSS的专题主席。
学术著作
书籍:
- Roschlaub, R., Glock, C., Möst, K., Li, Q., Auer, S., & Zhu, X. X. (2022). “Mit Deep Learning und amtlichen Daten zur landesweiten Detektion von Gebäuden und Gebäudeveränderungen.” in Künstliche Intelligenz in Geodäsie und Geoinformatik - Potenziale und Best-Practice-Beispiele, edited by Grunau, Wilfried. Germany: Wichmann Verlag.
期刊论文:
- Li, Q., Krapf, S., Mou, L., Shi, Y., & Zhu, X. X. (2024). Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures. Applied Energy, 374, 123839.
- Li, Q., Xu, G., & Gu, Z. (2024). A novel framework for multi-city building energy simulation: Coupling urban microclimate and energy dynamics at high spatiotemporal resolutions. Sustainable Cities and Society, 113, 105718.
- Li, Q., Mou, L., Sun, Y., Hua, Y., Shi, Y., & Zhu, X. X. (2024). A Review of Building Extraction from Remote Sensing Imagery: Geometrical Structures and Semantic Attributes. IEEE Transactions on Geoscience and Remote Sensing, 62,1-15.
- Liu, C., Albrecht, C. M., Wang, Y., Li, Q., & Zhu, X. X. (2024). AIO2: Online Correction of Object Labels for Deep Learning with Incomplete Annotation in Remote Sensing Image Segmentation. IEEE Transactions on Geoscience and Remote Sensing.
- Li, Q., Mou, L., Hua, Y., Shi, Y., Chen, S., Sun, Y., & Zhu, X. X. (2023). 3DCentripetalNet: Building height retrieval from monocular remote sensing imagery. International Journal of Applied Earth Observation and Geoinformation, 120, 103311.
- Li, Q., Krapf, S., Shi, Y., & Zhu, X. X. (2023). SolarNet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery. International Journal of Applied Earth Observation and Geoinformation, 116, 103098.
- Li, Q., Taubenböck, H., Shi, Y., Auer, S., Roschlaub, R., Glock, C., Kruspe, A., & Zhu, X. X. (2022). Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape. International Journal of Applied Earth Observation and Geoinformation, 112, 102909.
- Roschlaub, R., Glock, C., Möst, K., Hümmer, F., Li, Q., Auer, S., Kruspe, A., & Zhu, X. X. (2022). Implementierung einer KI-Infrastruktur zur automatisierten Erkennung von landesweiten Gebäudeveränderungen aus Luftbildern. ZfV-Zeitschrift für Geodäsie, Geoinformation und Landmanagement, (zfv 3/2022).
- Li, Q., Shi, Y., & Zhu, X. X. (2022). Semi-supervised building footprint generation with feature and output consistency training. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17.
- Li, Q., Zorzi, S., Shi, Y., Fraundorfer, F., & Zhu, X. X. (2022). RegGAN: An end-to-end network for building footprint generation with boundary regularization. Remote Sensing, 14(8), 1835.
- Li, Q., Mou, L., Hua, Y., Shi, Y., & Zhu, X. X. (2022). CrossGeoNet: A framework for building footprint generation of label-scarce geographical regions. International Journal of Applied Earth Observation and Geoinformation, 111, 102824.
- Li, Q., Mou, L., Hua, Y., Shi, Y., & Zhu, X. X. (2021). Building footprint generation through convolutional neural networks with attraction field representation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17.
- Li, Q., Shi, Y., Auer, S., Roschlaub, R., Möst, K., Schmitt, M., Glock, C., & Zhu, X. X. (2020). Detection of undocumented building constructions from official geodata using a convolutional neural network. Remote Sensing, 12(21), 3537.
- Li, Q., Shi, Y., Huang, X., & Zhu, X. X. (2020). Building footprint generation by integrating convolution neural network with feature pairwise conditional random field (FPCRF). IEEE Transactions on Geoscience and Remote Sensing, 58(11), 7502-7519.
- Li, Q., Qiu, C., Ma, L., Schmitt, M., & Zhu, X. X. (2020). Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with Google Earth Engine. Remote Sensing, 12(4), 602.
- Roschlaub, R., Li, Q., Auer, S., Möst, K., Glock, C., Schmitt, M., Shi, Y & Zhu, X. X. (2020). KI-basierte Detektion von Gebäuden mittels Deep Learning und amtlichen Geodaten zur Baufallerkundung. ZFV-Zeitschrift für Geodasie, Geoinformation und Landmanagement, (3), 180-189.
- Shi, Y., Li, Q., & Zhu, X. X. (2020). Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 184-197.
- Shi, Y., Li, Q., & Zhu, X. X. (2018). Building footprint generation using improved generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 16(4), 603-607.
- Li, Q., Huang, X., Wen, D., & Liu, H. (2017). Integrating multiple textural features for remote sensing image change detection. Photogrammetric Engineering & Remote Sensing, 83(2), 109-121.
- Huang, X., Li, Q., Liu, H., & Li, J. (2016). Assessing and improving the accuracy of GlobeLand30 data for urban area delineation by combining multisource remote sensing data. IEEE Geoscience and Remote Sensing Letters, 13(12), 1860-1864.
会议论文:
- Lin, W., Zhu, J., Hua, Y., Li, Q., Mou, L., & Zhu, X. X. (2024). Towards Sustainable Urban Energy: A Robust Deep Learning Framework for Solar Potential Estimation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 371-378.
- Li, Q., Krapf, S., Mou, L., Shi, Y., & Zhu, X. X. (2023). Roof superstructure detection from aerial imagery. In IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Li, Q., Sun, Y., Mou, L., Shi, Y., & Zhu, X. X. (2023). Semi-supervised segmentation of individual buildings from SAR imagery. In 2023 Joint Urban Remote Sensing Event (JURSE). IEEE.
- Li, Q., Shi, Y., & Zhu, X. X. (2022). Feature and output consistency training for semi-supervised building footprint generation. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Li, Q., Zorzi, S., Shi, Y., Fraundorfer, F., & Zhu, X. X. (2021). End-to-end semantic segmentation and boundary regularization of buildings from satellite imagery. In IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Chen, S., Mou, L., Li, Q., Sun, Y., & Zhu, X. X. (2021). Mask-height R-CNN: An end-to-end network for 3D building reconstruction from monocular remote sensing imagery. In IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Li, Q., Mou, L., Hua, Y., Sun, Y., Jin, P., Shi, Y., & Zhu, X. X. (2020). Instance segmentation of buildings using keypoints. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Li, Q., Shi, Y., Auer, S., Roschlaub, R., Möst, K., Schmitt, M., & Zhu, X. X. (2020). Detection of Undocumented Buildings Using Convolutional Neural Network and Official Geodata. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 517-524.
- Shi, Y., Li, Q., & Zhu, X. X. (2020). Building extraction by gated graph convolutional neural network with deep structured feature embedding. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Shi, Y., Li, Q., & Zhu, X. X. (2019). Building footprint extraction with graph convolutional network. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE.
- Shi, Y., Li, Q., & Zhu, X. X. (2019). BFGAN–building footprint extraction from satellite images. In 2019 Joint Urban Remote Sensing Event (JURSE). IEEE.