黄家裕
助理教授
教育背景
博士(康奈尔大学)
硕士(牛津大学)
研究领域
李群及李代数的表示论
学术领域
数学与应用数学
个人网站
电子邮件
danielwong@cuhk.edu.cn
个人简介
黄家裕教授于2007年在英国牛津大学取得数学硕士学位,2013年在美国康奈尔大学获得博士学位。他曾在香港科技大学(2013–2017)与康奈尔大学(2017-2018)进行博士后研究(2020–2022),2018至今在香港中文大学(深圳)任职助理教授。他的研究方向为约化李群的表示论。
学术著作
- (with K.Y. Chan) On the Lefschetz principle for GL(n,C) and GL(m,Qp), Israel Journal of Mathematics, accepted for publication
- (with D. Barbasch) Admissible modules and normality of classical nilpotent varieties, Festschrift in honor of Toshiyuki Kobayashi Volume 1, Progress in Mathematics 357, to appear
- (with H. Zhang) The unitary dual of U(p,2), International Mathematics Research Notices IMRN 14 (2024), 10678 - 10707
- On some conjectures of the unitary dual of U(p,q), Adavances in Mathematics 442 (2024), 109584
- (with J.-S. Huang and H. He) Transfer of unitary highest weight modules and small unipotent representations, Acta Mathematica Sinica (English Series) 40(3) (2024), 772-791
- (with C.P. Dong) Dirac Series of GL(n,R), International Mathematics Research Notices IMRN 12 (2023), 10702–10735
- Unipotent representations of exceptional Richardson orbits, Journal of Lie Theory 33 (2023), No. 4, 1087-1111
- (with C.P. Dong) Dirac Series for Complex E7, Forum Mathematicum 34(4) (2022), 1033–1049
- (with C.P. Dong) Dirac index of some unitary representations of Sp(2n,R) and SO*(2n), Journal of Algebra 603 (2022), 1 - 37
- (with C.P. Dong) Scattered Representations of Complex Classical Lie Groups, International Mathematics Research Notices IMRN 14 (2022), 10431–10457
- (with D. Barbasch and C.P. Dong) Dirac series for complex classical Lie groups: A multiplicity-one theorem, Advances in Mathematics 403 (2022), 108370
- (with C.P. Dong) On the Dirac Series of U(p,q), Mathematische Zeitschrift 298 (2021), 839 - 859
- (with C.P. Dong) Scattered Representations of SL(n,C), Pacific Journal of Mathematics 309 (2020), No. 2, 289 - 312
- (with J-S. Huang) A Casselman-Osborne Theorem for Rational Cherednik Algebras, Transformation Groups 23(1) (2018), 75 - 99
- Some Calculations of the Lusztig-Vogan bijection for Classical Nilpotent Orbits, Journal of Algebra 487 (2017), 317 - 339
- On Quantization of a Nilpotent Orbit Closure in G2, Proceedings of the American Mathematical Society 144 (2016), 5097 - 5102
- Quantization of Special Symplectic Nilpotent Orbits and Normality of their Closures, Journal of Algebra 462 (2016), 37 - 53
- Regular Functions of Symplectic Spherical Nilpotent Orbits and their Quantizations, Representation Theory 19 (2015), 333 -346