黄家裕

助理教授

教育背景

博士(康奈尔大学)

硕士(牛津大学)

研究领域
李群及李代数的表示论
学术领域
数学与应用数学
个人网站
电子邮件
danielwong@cuhk.edu.cn
个人简介

黄家裕教授于2007年在英国牛津大学取得数学硕士学位,2013年在美国康奈尔大学获得博士学位。他曾在香港科技大学(2013–2017)与康奈尔大学(2017-2018)进行博士后研究(2020–2022),2018至今在香港中文大学(深圳)任职助理教授。他的研究方向为约化李群的表示论。

学术著作
  1. (with K.Y. Chan) On the Lefschetz principle for GL(n,C) and GL(m,Qp), Israel Journal of Mathematics, accepted for publication
  2. (with D. Barbasch) Admissible modules and normality of classical nilpotent varieties, Festschrift in honor of Toshiyuki Kobayashi Volume 1, Progress in Mathematics 357, to appear
  3. (with H. Zhang) The unitary dual of U(p,2), International Mathematics Research Notices IMRN 14 (2024), 10678 - 10707
  4. On some conjectures of the unitary dual of U(p,q), Adavances in Mathematics 442 (2024), 109584
  5. (with J.-S. Huang and H. He) Transfer of unitary highest weight modules and small unipotent representations, Acta Mathematica Sinica (English Series) 40(3) (2024), 772-791
  6. (with C.P. Dong) Dirac Series of GL(n,R), International Mathematics Research Notices IMRN 12 (2023), 10702–10735
  7. Unipotent representations of exceptional Richardson orbits, Journal of Lie Theory 33 (2023), No. 4, 1087-1111
  8. (with C.P. Dong) Dirac Series for Complex E7, Forum Mathematicum 34(4) (2022), 1033–1049
  9. (with C.P. Dong) Dirac index of some unitary representations of Sp(2n,R) and SO*(2n), Journal of Algebra 603 (2022), 1 - 37
  10. (with C.P. Dong) Scattered Representations of Complex Classical Lie Groups, International Mathematics Research Notices IMRN 14 (2022), 10431–10457
  11. (with D. Barbasch and C.P. Dong) Dirac series for complex classical Lie groups: A multiplicity-one theorem, Advances in Mathematics 403 (2022), 108370
  12. (with C.P. Dong) On the Dirac Series of U(p,q), Mathematische Zeitschrift 298 (2021), 839 - 859
  13. (with C.P. Dong) Scattered Representations of SL(n,C), Pacific Journal of Mathematics 309 (2020), No. 2, 289 - 312
  14. (with J-S. Huang) A Casselman-Osborne Theorem for Rational Cherednik Algebras, Transformation Groups 23(1) (2018), 75 - 99
  15. Some Calculations of the Lusztig-Vogan bijection for Classical Nilpotent Orbits, Journal of Algebra 487 (2017), 317 - 339
  16. On Quantization of a Nilpotent Orbit Closure in G2, Proceedings of the American Mathematical Society 144 (2016), 5097 - 5102
  17. Quantization of Special Symplectic Nilpotent Orbits and Normality of their Closures, Journal of Algebra 462 (2016), 37 - 53
  18. Regular Functions of Symplectic Spherical Nilpotent Orbits and their Quantizations, Representation Theory 19 (2015), 333 -346