江瑛芝

客座助理教授

教育背景

化学博士(德国海德堡大学)

化学硕士(台湾大学)

化学学士(台湾大学)

研究领域
理论化学;计算生物学;生物信息学;统计力学
学术领域
物理,化学,人工智能与机器人
个人网站
电子邮件
chiangyc@cuhk.edu.cn
个人简介

江瑛芝是一位计算化学家,其研究经验涵盖了分子动力学、统计力学和计算辅助药物设计等一系列前沿课题。江瑛芝在德国海德堡攻读博士学位,研究重点是气相原子物理。她的研究探讨了电子衰变过程中核运动的影响,重新塑造了人们对相关光谱中测得线宽的理解。

在博士研究结束后,江瑛芝将研究重点转向生物物理学。她曾在香港中文大学担任博士后研究员,后在南安普敦大学以牛顿国际学者身份展开独立研究。在此期间,江瑛芝开发了一种新方法,用于后处理配体轨迹以计算配体与其衍生物和蛋白质结合时的自由能差。除此之外,她还通过分子动力学模拟探究了酶进化对底物结合的影响。随着时间的推移,她的研究逐渐转向与微生物耐药性相关的靶点。

目前,江瑛芝担任香港中文大学(深圳)助理教授,依托科比尔卡创新药物开发研究所,展开研究工作。她的团队开发了多个用于抗微生物肽分类的机器学习模型、通过分子动力学模拟研究了药物受体与底物结合模式,并使用量子计算优化了β-内酰胺药物的力场参数。迄今为止,江瑛芝已在多种同行评审期刊上发表了42篇论文,包括《自然结构与分子生物学》(影响因子18.36)、《自然通讯》(影响因子14.7)、《生物信息学简报》(影响因子13.99)、《蛋白质科学》(影响因子8.0)、《分析化学》(影响因子8.0)、《物理评论快报》(影响因子8.1)、《化学物理杂志》(影响因子4.4)等。

学术著作
  1. CapsEnhancer: An Effective Computational Framework for Identifying Enhancers Based on Chaos Game Representation and Capsule Network. L. Yao, P. Xie, J. Guan, C.-R. Chung, Y. Huang, Y. Pang, H. Wu, Y.-C. Chiang, and T.-Y. Lee. J. Chem. Inf. Model. 2024, 64(14): 5725–5736.
  2. Discovery and substrate specificity engineering of nucleotide halogenases. J. Ni, J. Zhuang, Y. Shi, Y.-C. Chiang, and G.-J. Cheng. Nat. Commun. 2024, 15(1): 5254.
  3. AMPActiPred: A three‐stage framework for predicting antibacterial peptides and activity levels with deep forest. L. Yao, J. Guan, P. Xie, C.‐R. Chung, J. Deng, Y. Huang, Y.‐C. Chiang, and Tzong‐Yi Lee. Prot. Sci. 2024, 33(6): e5006.
  4. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. J. Guan, L. Yao, P. Xie, C.-R. Chung, Y. Huang, Y.-C. Chiang, and T.-Y. Lee. Brief. Bioinform. 2024, 25(3): bbae208.
  5. Identifying Residues for Substrate Recognition in Human GPAT4 by Molecular Dynamics Simulations. Y. Liu, Y. Xu, Y. Xu, Z. Zhao, G.-J. Cheng, R. Ren, and Y.-C. Chiang. Int. J. Mol. Sci. 2024, 25(7): 3729.
  6. Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation.  L. Yao, J. Guan, W. Li, C.-R. Chung, J. Deng, Y.-C. Chiang, and T.-Y. Lee. Anal. Chem. 2024, 96(4): 1538–1546.
  7. Structural insights into the activation and inhibition of CXC chemokine receptor 3. H. Jiao, B. Pang, A. Liu, Q. Chen, Q. Pan, X. Wang, Y. Xu, Y.-C. Chiang, R. Ren and H. Hu. Nat. Struct. Mol. Biol. 2024, 31(4): 610-620.
  8. Structure basis for the modulation of CXC chemokine receptor 3 by antagonist AMG487. H. Jiao, B. Pang, Y.-C. Chiang, Q. Chen, Q. Pan, R. Ren and H. Hu. Cell Discov. 2023, 9(1): 119.
  9. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning. J. Guan, L. Yao, C.-R. Chung, P. Xie, Y. Zhang, J. Deng, Y.-C. Chiang, and T.-Y. Lee. J. Chem. Inf. Model. 2023, 63(24): 7886–7898.
  10. DeepAFP: an effective computational framework for identifying antifungal peptides based on deep learning. L. Yao, Y. Zhang, W. Li, C.-R. Chung, J. Guan, W. Zhang, Y.-C. Chiang, and T.-Y. Lee. Protein Sci. 2023, 32(10): e4758.
  11. StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture. J. Guan, L. Yao, C.-R. Chung, Y.-C. Chiang and T.-Y. Lee. Int. J. Mol. Sci. 2023, 24(12): 10348.
  12. ABPCaps: A Novel Capsule Network-Based Method for the Prediction of Antibacterial Peptides. L. Yao, Y. Pang, J. Wan, C.-R. Chung, J. Yu, J. Guan, C. Leung, Y.-C. Chiang and T.-Y. Lee. Appl. Sci. 2023, 13(12): 6965.
  13. Accelerating the discovery of anticancer peptides through deep forest architecture with deep graphical representation. L. Yao, W. Li, Y. Zhang, J. Deng, Y. Pang, Y. Huang, C.-R. Chung, J. Yu, Y.-C. Chiang and T.-Y. Lee.  Int. J. Mol. Sci. 2023, 24(5): 4328.
  14. Exploring the chemical space of CYP17A1 inhibitors using cheminformatics and machine learning. T. Yu, T. Huang, L. Yu, C. Nantasenama, N. Anuwongcharoen, T. Piacham, R. Ren and Y.-C. Chiang. Molecules 2023, 28(4): 1679.
  15. Identification of neurotoxic compounds in cyanobacteria exudate mixtures. Y. Zi, J. R. Barker, H. J. MacIsaac, R. Zhang, R. Gras, Y-C. Chiang, Y. Zhou, F. Lu, W. Cai, C. Sun and X. Chang.  Sci. Total Environ. 2022, 857(Part 2): 159257.
  16. On the force field optimisation of β-lactam cores using the force field Toolkit.  Q. Wu, T. Huang, S. Xia, F. Otto, T.-Y. Li, H.-D. Huang and Y.-C. ChiangJ. Comput. Aided Mol. Des. 2022, 36(7): 537-547.
  17. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data.  J.-H. Jhong, L. Yao, Y.  Pang, Z. Li, C.-R. Chung, R. Wang, S. Li, W. Li, M. Luo, R. Ma, Y. Huang, X. Zhu, J. Zhang, H. Feng, Q. Cheng, C. Wang, K. Xi, L.-C. Wu, T.-H. Chang, J.-T. Horng, L. Zhu, Y.-C. Chiang, Z. Wang and T.-Y. Lee.  Nucleic Acids Res. 2022, 50(D1): D460-D470.
  18. Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism.  YF. Han, Q. Zhuang, B. Sun, WP. Lv, S. Wang, QJ. Xiao, B. Pang, YL. Zhou, FX. Wang, PL. Chi, QS. Wang, Z. Li, LZ. Zhu, FP. Li, D. Deng, Y.-C. Chiang, ZF. Li and RB. Ren.   Nat. Commun. 2021, 12(1): 449.
  19. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins.  M. P. Torrens-Spence, Y.-C. Chiang, T. Smith, M. A. Vicent, Y. Wang and J.-K. Weng.  Proc. Natl. Acad. Sci. U.S.A. 2020, 117(20): 10806.
  20. Molecular Dynamics Simulations of Antibiotic Ceftaroline at The Allosteric Site of Penicillin-Binding Protein 2a (PBP2a).  Y.-C. Chiang, M. T. Y. Wong and J. W. Essex.  Isr. J. Chem. 2020, 60(7): 754.
  21. Molecular bond-breaking induced by Interatomic Coulombic Decay.  Y.-C. Chiang, S. Engin, P. Bao, F. Otto, P. Kolorenc, P. Votavova, T. Miteva, J. Gao and N. Sisourat.  Phys. Rev. A 2019, 100(5): 052701.
  22. Structural and dynamic basis of substrate permissiveness in hydroxy-cinnamoyl-transferase (HCT).  Y.-C. Chiang, O. Levsh, C. K. Lam, J.-K. Weng and Y. Wang.  PLOS Comput. Biol. 2018, 14(10): e1006511.
  23. Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants.  G. Liou, Y.-C. Chiang, Y. Wang and J.-K. Weng.  J. Biol. Chem. 2018, 293(48): 18601-18612.
  24. Accuracy of Potfit-based potential representations and its impact on the performance of (ML-)MCTDH.  F. Otto, Y.-C. Chiang and D. Peláez.  Chem. Phys. 2018, 509: 116-130.
  25. Strong field control of the interatomic Coulombic decay process in quantum dots.  A. Haller, Y.-C. Chiang, M. Menger, E. F. Aziz and A. Bande.  Chem. Phys. 2017, 482: 135-145.
  26. Dynamic conformational states dictate selectivity toward native substrate in a substrate-permissive acyltransferase.  O. Levsh, Y.-C. Chiang, C. F. Tung, J. P. Noel, Y. Wang and J.-K. Weng.  Biochemistry. 2016, 55(45): 6314-6326.
  27. The role of intramolecular nonbonded interaction and angle sampling in single-step free energy perturbation.  Y.-C. Chiang, Y. T. Pang and Y. Wang.  J. Chem. Phys. 2016, 145(23): 234109.
  28. Virtual substitution scan via single-step free energy perturbation.  Y.-C. Chiang and Y. Wang.  Biopolymers. 2016, 105(6): 324-336.
  29. Ab initio calculation of ICD widths in photoexcited HeNe.  G. Jabbari, S. Klaiman, Y.-C. Chiang, F. Trinter, T. Jahnke and K. Gokhberg.  J. Chem. Phys. 2014, 140(22): 224305.
  30. The effect of the partner atom on the spectra of interatomic Coulombic decay triggered by resonant Auger processes.  T. Miteva, Y.-C. Chiang, P. Kolorenc, A. I. Kuleff, L. S. Cederbaum and K. Gokhberg.  J. Chem. Phys. 2014, 141(16): 164303.
  31. Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer.  T. Miteva, Y.-C. Chiang, P. Kolorenc, A. I. Kuleff, K. Gokhberg and L. S. Cederbaum.  J. Chem. Phys. 2014, 141(6): 064307.
  32. The exact wavefunction factorization of a vibronic coupling system.  Y.-C. Chiang, S. Klaiman, F. Otto and L. S. Cederbaum.  J. Chem. Phys. 2014, 140(5): 054104.
  33. Vibrationally resolved decay width of Interatomic Coulombic Decay in HeNe.  F. Trinter, J. B. Williams, M. Weller, M. Waitz, M. Pitzer, J. Voigtsberger, C. Schober, G. Kastirke, C. Müller, C. Goihl, P. Burzynski, F. Wiegandt, R. Wallauer, A. Kalinin, L. Ph. H. Schmidt, M. S. Schöffler, Y.-C. Chiang, K. Gokhberg, T. Jahnke, and R. Dörner.  Phys. Rev. Lett. 2013, 111(23): 233004.
  34. Quenching molecular photodissociation by intermolecular Coulombic decay.  S. Kopelke, Y.-C. Chiang, K. Gokhberg and L. S. Cederbaum.  J. Chem. Phys. 2012, 137(3): 034302.
  35. Kinetic energy release in fragmentation processes following electron emission: A time-dependent approach.  Y.-C. Chiang, F. Otto, H.-D. Meyer and L. S. Cederbaum.  J. Chem. Phys. 2012, 136(11): 114111.
  36. Interatomic Coulombic decay following Ne 1s Auger decay in NeAr.  T. Ouchi, K. Sakai, H. Fukuzawa, I. Higuchi, Ph. V. Demekhin, Y.-C. Chiang, S. D. Stoychev, A. I. Kuleff, T. Mazza, M. Schöffler, K. Nagaya, M. Yao, Y. Tamenori, N. Saito and K. Ueda.  Phys. Rev. A 2011, 83(5): 053415.
  37. Resonant Auger decay of the core-excited C*O molecule in intense X-ray laser fields.  Ph. V. Demekhin, Y.-C. Chiang and L. S. Cederbaum.  Phys. Rev. A 2011, 84(3): 033417.
  38. Interrelation between the distributions of kinetic energy release and emitted electron energy following the decay of electronic states.  Y.-C. Chiang, F. Otto, H.-D. Meyer and L. S. Cederbaum.  Phys. Rev. Lett. 2011, 107(17): 173001.
  39. Resonant Auger decay of molecules in intense X-ray laser fields: Light-induced strong nonadiabatic effects.  L. S. Cederbaum, Y.-C. Chiang, Ph. V. Demekhin and N. Moiseyev.  Phys. Rev. Lett. 2011, 106(12): 123001.
  40. Interatomic electronic decay processes in singly and multiply ionized clusters.  V. Averbukh, Ph. V. Demekhin, P. Kolorenč, S. Scheit, S. D. Stoychev, A. I. Kuleff, Y.-C. Chiang, K. Gokhberg, S. Kopelke, N. Sisourat, and L. S. Cederbaum.  J. Electron. Spectrosc. Relat. Phenom. 2011, 183(1-3): 36-47.
  41. Linewidth and lifetime of atomic levels and the time evolution of spectra and coincidence spectra.  Y.-C. Chiang, P. V. Demekhin, A. I. Kuleff, S. Scheit and L. S. Cederbaum.  Phys. Rev. A 2010, 81(3): 032511.
  42. Interatomic Coulombic decay and its dynamics in NeAr following K-LL Auger transition in the Ne atom.  Ph. V. Demekhin, Y.-C. Chiang, S. D. Stoychev, P. Kolorenc, S. Scheit, A. I. Kuleff, F. Tarantelli and L. S. Cederbaum.  J. Chem. Phys. 2009, 131(10): 104303.