Main Menu
— Faculty —

ZHENG, Qingbin

Title:

Assistant Professor

Education Background

PhD (The Hong Kong University of Science and Technology)

Master (China University of Petroleum)

Bachelor (China University of Petroleum)

Research Field
New carbon materials; Transparent conductors Multifunctional sensors; Surfaces and interfaces of materials; Nanocomposites reinforced with nanofillers; Molecular simulations
Personal Website

http://repository.ust.hk/ir/AuthorProfile/zheng-qingbin

Email

zhengqingbin@cuhk.edu.cn

Biography:


Prof Zheng received his PhD from Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology (HKUST). Before joining CUHKSZ, he was a Visiting Scholar at HKUST (2011-2012), an Alexander von Humboldt Research Fellow at Leibniz Institute of Polymer Research Dresden Germany (2013-2015), and a Research Assistant Professor of the Department of Mechanical and Aerospace Engineering and Junior Fellow of the Institute for Advanced Study (IAS) at HKUST (2015-2019). Prof Zheng’s research is focused on advanced carbon materials, ranging from nanocomposites with graphene, carbon nanotubes, carbon nanofibers and 2D materials, to nanostructured materials for various wearable applications. He has published more than 50 peer reviewed papers in top-ranked scientific journals such as Prog Mater Sci, ACS Nano, Adv Funct Mater, Mater Horiz, Nanoscale Horiz, ACS Appl. Mater. Interfaces and Carbon, with a total Web of Science citations of 3500+ and an H-index of 29.


Academic Publications:


Books:

Papers:    ResearcherID     Google Scholar   

 

  • Lee J. H., Kim J. M., Liu D., Guo F. M., Zheng Q. B.*, Jeon S. K., Kim J. K.* (2019): Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Advanced Functional Materials, 1901623.
  •  
  • Liu X.,  Liu D., Lee J. H., Zheng Q. B.*,  Du X.H., Zhang X. Y., Xu H. R., Wang Z. Y., Wu Y., Cui J., Mai Y. W., Kim J. K.* (2019): Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. (highlighted by Nano WerkGraphene researchers are inspired by spider websACS Applied Materials & Interfaces, 11, 2282–2294.
  •  
  • Zheng Q. B., Liu X., Xu H. R., Cheung M. S., Choi Y. W., Huang H. C., Lei H. Y., Shen X., Wang Z. Y., Wu Y., Kim S. Y., Kim J. K.  (2018): Sliced Graphene Foam films for Dual-functional Wearable Strain Sensors and Switches. (Inside front coverNanoscale  Horizons, 3, 35-44. 
  •  
  • Shen X., Wang Z. Y., Wu Y., Liu X., He Y. B., Zheng Q. B., Yang Q. H., Kang F. Y., Kim J. K. (2018): Three-Dimensional Multilayer Graphene Web for Polymer Nanocomposites with Exceptional Transport Properties and Fracture Resistance. Materials Horizons, 5, 275-284.
  •  
  • Wang Z. Y., Liu X., Shen X., Han N. M., Wu Y., Zheng Q. B., Jia J. J., Wang N., Kim J. K. (2018): Ultralight graphene honeycomb sandwich for stretchable light-emitting display. Advanced Functional Materials, 28, 1707043.
  •  
  • Han N. M., Wang Z. Y., Shen X., Wu Y., Liu X., Zheng Q. B., Kim T. H., Yang J. L., Kim J. K. (2018): Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 10, 6580-6592.
  •  
  • Wu Y., Wang Z. Y., Shen X., Liu X., Han N. M.,  Zheng Q. B., Mai Y. W., Kim J. K. (2018): Graphene/Boron Nitride−Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Applied Materials & Interfaces, 10, 26641−26652.
  •  
  • Huang J. Q., Chong W. G., Zheng Q. B., Xu Z. L., Cui J., Yao S. S., Wang C. W., Kim J. K. (2018): Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. Electrochimica Acta, 268, 1-9.
  •  
  • Liu X., Tang C., Du X. H., Xiong S., Xi S. Y., Liu Y. F., Shen X., Zheng Q. B.*, Wang Z. Y., Wu Y., Horner A., Kim J. K. (2017): A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instrumentMaterials Horizons, 4, 477-486.
  •  
  • Wu Y., Wang Z. Y., Liu X., Shen X., Zheng Q. B.*, Xue Q., Kim J. K. (2017): Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Applied Materials & Interfaces, 9, 9059–9069.
  •  
  • Wang Z. Y., Han N. M., Wu Y., Liu X., Shen X., Zheng Q. B.,  Kim J. K.  (2017): Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 123, 385-394.
  •  
  • Zheng Q. B., Li Z. G., Yang J. H., Kim J. K. (2014): Graphene oxide-based transparent conductive filmsProgress in Materials Science, 64, 200-247.
  •  
  • Huang, J. H., Zheng, Q. B., Kim, J. K., Li Z. G. (2013): A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosensors & Bioelectronics, 43, 379-383.
  •  
  • Yousefi, N., Lin X. Y., Zheng, Q. B., Shen X., Pothnis J. R., Jia J. J., Zussman E., Kim J. K. (2013): Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon, 59, 406-417.
  •  
  • Yousefi, N., Gudarzi, M. M., Zheng, Q. B., Lin X. Z., Shen X., Jia J. J., Sharif F., Kim J. K. (2013): Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing, 49, 42-50.
  •  
  • Zheng Q. B., Zhang B., Lin X. Y., Shen X., Yousefi N., Huang Z. D., Li Z. G., Kim J.K. (2012): Highly transparent and conducting ultra-large graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072-25082.
  •  
  • Lin X. Y., Shen X., Zheng Q. B., Yousefi N., Ye L., Mai Y. W., Kim J. K. (2012): Fabrication of highly-aligned, conductive, and strong graphene papers using ultra-large graphene oxide sheets. ACS Nano, 6, 10708-10719.
  •  
  • Huang Z. D., Zhang B., Liang R., Zheng Q. B., Oh S., Lin X. Y., Yousefi N., Kim J.-K. (2012): Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon, 50, 4239-4251.
  •  
  • Yousefi N., Gudarzi M. M., Zheng Q. B., Aboutalebi S. H., Sharif F., Kim J.-K. (2012): Self-alignment and high electrical conductivity of ultralarge graphene oxide/polyurethane nanocomposites. Journal of Materials Chemistry, 22, 12709-12717.
  •  
  • Huang Z. D., Zhang B., Oh S., Zheng Q. B., Lin X. Y., Yousefi N., Kim J.-K. (2012): Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. Journal of Materials Chemistry, 22, 3591-3599.
  •  
  • Zheng Q. B., Ip W. H., Lin X. Y., Yousefi N., Yeung K. K., Li Z. G., Kim J.K. (2011): Transparent conductive films consisting of ultra-large graphene sheets produced by Langmuir-Blodgett assemblyACS Nano, 5, 6039-6051.
  •  
  • Aboutalebi, S. H., Gudarzi M. M., Zheng Q. B., Kim J. K. (2011): Spontaneous formation of liquid crystals in ultra-large graphene oxide dispersions. Advanced Functional Materials, 21, 2978-2988.
  •  
  • Zheng Q. B., Gudarzi M. M., Wang S. J., Geng Y., Li Z. G., Kim J.K. (2011): Improved electrical and optical characteristics of transparent graphene thin films by acid and doping treatments. Carbon, 49, 2905-2916.
  •  
  • Zhang B., Zheng Q. B., Huang Z. D., Oh S., Kim J.-K. (2011): SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities. Carbon, 49, 4524-4534.
  •  
  • Zheng Q. B., Geng Y., Wang S. J., Li Z. G., Kim J.K. (2010): Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 48, 4315-4322.
  •  
  • Zheng Q. B., Xia D., Xue Q. Z., Yan K. Y., Gao X. L., Li Q. (2009): Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system. Applied Surface Science, 6, 3534-3543.
  •  
  • Zheng Q. B., Xue Q. Z., Yan K. Y., Gao X. L., Li Q., Hao L. Z. (2008): Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer, 49, 800-808.
  •  
  • Zheng Q. B., Xue Q. Z., Yan K. Y., Gao X. L., Li Q., Hao L. Z. (2008): Influence of chirality on the interfacial bonding characteristics of carbon nanotube polymer composites. Journal of Applied Physics, 103, 044302.
  •  
  • Zheng Q. B., Xue Q. Z., Yan K. Y., Hao L. Z., Li Q., Gao X. L. (2007): Investigation of molecular interactions between SWNT and polyethylene /polypropylene /polystyrene /polyaniline MoleculesJournal of Physical Chemistry C, 111, 4628-4637.